- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Das, R. (3)
-
Das, R (2)
-
Abbott, T. M. (1)
-
Abdalla, F. B. (1)
-
Allam, S. (1)
-
Amara, A. (1)
-
Andres-Bray, J.M. (1)
-
Annis, J. (1)
-
Asorey, J. (1)
-
Avila, S. (1)
-
Baker R.S. (1)
-
Ballester, O. (1)
-
Banerji, M. (1)
-
Barkhouse, W. (1)
-
Baruah, L. (1)
-
Baumer, M. (1)
-
Bechtol, K. (1)
-
Becker, M. R. (1)
-
Benoit-Lévy, A. (1)
-
Bernstein, G. M. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 4, 2026
-
Sanyal, S; Prairie, H; Das, R; Kavis, A; Sanghavi, S (, https://doi.org/10.48550/arXiv.2502.02797)Fine-tuning a pre-trained model on a downstream task often degrades its original capabilities, a phenomenon known as "catastrophic forgetting". This is especially an issue when one does not have access to the data and recipe used to develop the pre-trained model. Under this constraint, most existing methods for mitigating forgetting are inapplicable. To address this challenge, we propose a sample weighting scheme for the fine-tuning data solely based on the pre-trained model's losses. Specifically, we upweight the easy samples on which the pre-trained model's loss is low and vice versa to limit the drift from the pre-trained model. Our approach is orthogonal and yet complementary to existing methods; while such methods mostly operate on parameter or gradient space, we concentrate on the sample space. We theoretically analyze the impact of fine-tuning with our method in a linear setting, showing that it stalls learning in a certain subspace which inhibits overfitting to the target task. We empirically demonstrate the efficacy of our method on both language and vision tasks. As an example, when fine-tuning Gemma 2 2B on MetaMathQA, our method results in only a 0.8% drop in accuracy on GSM8K (another math dataset) compared to standard fine-tuning, while preserving 5.4% more accuracy on the pre-training datasets.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Richey J.E.; Zhang, J.; Das, R.; Andres-Bray, J.M.; Scruggs, R.; Mogessie, M.; Baker R.S.; McLaren, B.M. (, Proceedings of the International Conference on Artificial Intelligence and Education)
-
Das, R.; Kalappattil, V.; Geng, R.; Luong, H.; Pham, M.; Nguyen, T.; Liu, Tao; Wu, Mingzhong; Phan, M. H.; Srikanth, H. (, AIP Advances)
-
Abbott, T. M.; Abdalla, F. B.; Allam, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; Ballester, O.; Banerji, M.; Barkhouse, W.; et al (, The Astrophysical Journal Supplement Series)
An official website of the United States government

Full Text Available